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1.1  Introduction 

The mathematicians, scientists and engineers, generally, describe the real world problem by the 

partial differential equation, as a result of its mathematical modeling.  The mathematical modeling of most 

problems in science involving rates of change with respect to two or more independent variables, usually 

representing time, length or angle, leads either to a Partial Differential Equation (PDE) or to a set of such 

equations. The partial differential equations (PDEs) are obtained by the engineers and scientists in almost 

all the fields to describe a large number of real world problems. Many of the PDEs which result from 

engineering problems cannot be readily solved by analytical methods. Only a few of them have analytical 

solutions.  Consequently, knowledge of the methods for obtaining numerical solutions of PDEs is 

important to the modern engineers.  A numerical solution is obtained for the differential equation with 

specific boundary conditions. These, of course, describe some physical problem. For solving differential 

equations, the numerical approximation methods such as Finite Difference Methods (FDMs) are frequently 

used and more universally applicable than any other. The FDMs are most simple, easy and efficient to 

apply on partial differential equations among all the numerical methods.  

The basic numerical solution schemes for the PDEs are the Finite Difference Methods.  The FDMs 

are basic numerical solution schemes, obtained by replacing the derivatives in the given Partial Differential 

Equation (PDE) by the appropriate numerical differentiation formulae. Numerical methods generally 

provide adequate numerical solutions for the PDEs more simply and efficiently. This is certainly so with 

the FDMs for solving partial differential equations. FDMs generally give solutions that are either as 

accurate as the data warrant or as accurate as is necessary for the technical purposes for which the solutions 

are prepared. In both cases a finite-difference solution is as satisfactory as one calculated from an analytical 

formula [1, 5].   

Numerical methods generally provide adequate numerical solutions more simply and efficiently. 

This is certainly so with finite-difference methods for solving PDEs.  In these methods (Figure 1.1), the 

area S bounded by the closed curve C , is overlapped by the system of rectangular meshes formed by two 
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sets of equally spaced lines, one set parallel to Ox  and the other parallel to Oy , and an approximate 

solution to the differential equation is found at the points of intersection  
1,1 1,2 ,, , . . . , , . . .i jP P P  of the parallel 

lines, which points are called mesh points.(other terms in common use are grid, nodal, pivotal or lattice 

points) .  

 

Figure 1.1 Rectangular mesh  

This solution is obtained by approximating the partial differential equation over the area S  by n  algebraic 

equations involving the values of   at n  grid points internal to C . The approximation consists of 

replacing each derivative of the partial differential equation at the point 
,i jP (say) by a finite-difference 

approximation in terms of the values of     at 
,i jP  and at neighbouring grid points and boundary points and 

in writing down for each of the n  internal mesh points the algebraic equation approximating the 

differential equation. This process clearly gives n  algebraic equations for the n  unknowns

1,1 1,2 ,,  ,  . . . , , . . .i j   .[9] 

 

Figure 1.2 Common two dimensional grid patterns 

1.2   Notation for Discrete variables  

 

                                       Figure 1.3 Discrete and continuous variables    
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 There is useful relations between values of the independent variable at adjacent points are 

      1i ix x x          &      1i ix x x    (1.1) 

 In the nomenclature given above, the Taylor series appears as 

     
 

2 3 42 3 4
5

1 2 3 42! 3! 4!
i i

i i i i

x x xdu d u d u d u
u u x x

dx dx dx dx


        
             

       
 (1.2)                  

In a similar manner, the value of u  at 1ix   is 

     
 

2 3 42 3 4
5

1 2 3 42! 3! 4!
i i

i i i i

x x xdu d u d u d u
u u x x

dx dx dx dx


        
             

       
 (1.3)                        

 

Here,  
5

x   is the error introduced by truncating the series. Finite difference analogs to the first and 

second derivatives can be obtained from the equations (1.2) and (1.3).                   

 

1.3   Finite Difference Quotients for the First and Second Derivatives 

When equation (1.2) is solved for the first derivative, it takes the form  

   
2 32 3 4

1

2 3 4
. . .

2! 3! 4!

i i

i i i i

x xu udu d u x d u d u

dx x dx dx dx


        

          
       

 (1.4)                              

In the equation (1.4) the term  
1i i

i

u udu

dx x

  
 

 
  is the first difference quotient to the first derivative. 

Adding the equations (1.2) and (1.3), the series is obtained as 

 
 

42 4
2

1 1 2 4
2 2 . . .

4!
i i i

i i

xd u d u
u u u x

dx dx
 

   
        

   
   (1.5) 

Writing this equation explicitly for the second derivative, it becomes 

 

 
22 4

1 1

22 4

2
. . .

12

i i i

i i

xu u ud u d u

dx dxx

 
    

     
   

   (1.6) 

A finite difference quotient of the second derivative is    
 

2

1 1

22

2i i i

i

u u ud u

dx x

 
   

 
 

    since, first term 

dropped contains  
2

x , it is a second order correct analog. Such an analog for the first derivative can be 

obtained by subtracting equation (1.3) from equation (1.2).  
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23

1 1

3
. . .

2 6

i i

i i

xu udu d u

dx x dx

 
  

    
   

       (1.7) 

The desired second-order-correct finite difference quotient to the first derivative, is 

 
1 1

2

i i

i

u udu

dx x

  
 

 
 , observe that the first term to be truncated contains  

2
x [3, 7].   

1.4    Finite Difference Scheme for Solving Linear Parabolic Equations 

Parabolic partial differential equations arise from unsteady-state problems in which transport by conduction 

or diffusion is important. A general equation of this type describes the unsteady-state heating of the tapered 

rod. Consider the simplest parabolic equation, which describes conduction in a uniform, insulated rod: 

2

2

u u

x t

 


 
 (1.8)  

with the simplest boundary conditions 

 

 

0,  0

1,  1

u t

u t




         ; for all t  (1.9)  

The initial conditions to be used is 

 ,0 0 ; 1u x x   (1.10)  

The length variable, x , varies between 0 and 1, and the time variable, t , increases without limit from zero. 

The region between 0 and 1 along the x -axis is divided into R  equal increments of size x h  , with grid 

points on each boundary. The time axis is divided into increments of size t k  (may not be constant).  

ix i x   ; 1i ix x x     and 1i ix x x   . The values of the time increment t  may not be constant. To 

specify the value of u  at a given point, two subscripts are used;    ,, ni i nu x t u . 

 

Figure 1.4 Grid points for unsteady-state problem [7] 
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1.5    Forward (Explicit) Difference Equation 

 Write the relation at the known time level which is indexed by n . This relation is 

 

2
1, , 1,

22

,

2i n i n i n

i n

u u uu

x x

   
 

  
 (1.11)  

   It is second-order-correct in the variable x . Take the first-order-correct analog to the time derivative 

obtained from a Taylor series in time about the point ,i nx t  as  

2
, 1 ,

2

, ,

. . .
2!

i n i n

i n i n

u uu u t

t t t

      
   

     
 (1.12)  

Substituting the analogs of the equations (1.11) and (1.12) into equation (1.8), the finite difference equation 

becomes, 

  , 1 1, , 1,1 2i n i n i n i nu r u r u r u         ; where    
 

2

t
r

x





 (1.13)  

This equation is referred to as a Forward (explicit) difference equation. The  

 

Figure 1.5 Stencil for Heat Equation for r (Forward Finite difference Scheme)  

The solution of equation (1.13) approaches to that of equation (1.8), only if 0.5.r 

          

    

1.6    Backward (Implicit) Difference Equation  

Write the finite difference quotient at the new time level indexed by  1n  [7, 1]. 

 

2
1, 1 , 1 1, 1

22

, 1

2i n i n i n

i n

u u uu

x x

    



  
 

  
 (1.14)  

The analog to the time derivative obtained from Taylor series in time about the point 1,i nx t            

2
, 1 ,

2

, 1 , 1

. . .
2!

i n i n

i n i n

u uu u t

t t t



 

     
   

     
 (1.15)  

Substituting the analogs of the equations (1.14) and (1.15)) into equation (1.8), we get,  

      1, 1 , 1 1, 1 ,        1 2i n i n i n i nru r u ru u              where,  
2

r t x    (1.16)  

The equation (1.16) is a Backward (implicit) difference scheme at the unknown time level.  

For 1i   and 1i R   for the boundary conditions of equation (1.9) are given as 
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2 2

1, 1 2, 1 1,2 n n n

x x
u u u

t t
 

    
       
    
   

 (1.17)  

   
2 2

2, 1 1, 1 1,2 1R n R n R n

x x
u u u

t t
    

    
        
    
   

 (1.18)  

 

 The resulting set of equations is of the form of equations (1.19); i.e. the coefficient matrix is tridiagonal [7, 

8, 11]. The set of equations which has been obtained is of the form 

1 1 1 2 1

2 1 2 2 2 3 2

3 2 3 3 3 4 3

1 1

2 3 2 2 2 1 2

1 2 1 1 1

0 . . . 0

0 . . . 0

0 0 . . . 0

. . .

0 . . . 0 . . . 0

. . .

0 . . . 0

0 . . . 0 . . . . . .0 0

i i i i i i i

R R R R R R R

R R R R R

b u c u d

a u b u c u d

a u b u c u d

a u bu c u d

a u b u c u d

a u b u d

 

      

    

    

     

      

       

     

      

  (1.19) 

Equation (1.19) represents a linear system of  1R   equations having 1R   unknowns 

1 2 3 1, , , . . . , Ru u u u   , in the form of  u D    where,  is a tridiagonal matrix of order 1R  . 

1.7  Cranks-Nicolson Equation (Central difference equation)                                      

For the desired second-order-correct equation, called the Crank-Nicolson equation; all the finite differences 

are written about the point 1
2

,i n
x t


, which is halfway between the known and the unknown time levels. In 

Figure 1.6, this point is shown as a cross. 

 

Figure 1.6  Center of analog for Crank-Nicolson equation  

The values of the dependent variable, u , are computed only at the points designated by circles. The second-

order-correct analog of the time derivative at the point 1
2

,  i n
x t


 is  

 

1 1
2 2

23
, 1 ,

3

, ,

. . .
24

i n i n

i n i n

u u tu u

t t t



 

    
     

     
 (1.20)  
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The real key to the Crank-Nicolson equation is the manner of approximating 
2

2
u

x



, by the arithmetic 

average of its finite difference analogs at the points ,i nx t  and 1,i nx t   [7, 4, 6, 2]. 

   

2
1, 1 , 1 1, 1 1, , 1,

2 22

, 1

2 21

2

i n i n i n i n i n i n

i n

u u u u u uu

x x x

      



     
   

      

 (1.21) 

 

Substituting the analogs of the equations (1.20) and (1.21) into equation (2.1), we get                      

   
2 2

1, 1 , 1 1, 1 1, , 1,

2 2
2 2i n i n i n i n i n i n

x x
u u u u u u

t t
      

    
           

       

    (1.22)  

Substituting   
2

r t x     the Crank-Nicolson finite difference equation is obtained as, 

   1, 1 , 1 1, 1 1, , 1,2 1 2 1i n i n i n i n i n i nru r u r u r u r u r u                    (1.23) 

 

The boundary equations can be obtained from equation (1.23) by setting   

0, 1 0, 0n nu u    in the equation for   1,i    and     , 1 , 1R n R nu u    in the equation for 1.i R    

1.8    Numerical   and Analytical Solutions of the PDE    

The analytical solution of the PDE given in the equation (1.8) subject to the boundary and initial   

conditions of the equations   (1.9) and (1.10) given in the following form [10] 

     
 

 
1

2 212
   , sin  ,

n

n
n tx x t x n x e

ns tu x t u u 







               (1.24)  

 

Figure 1.7 Graphical representation of the Analytical solution 
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Table 1.1 Numerical solution by FDMs and Analytical solution for   
2

0.48t xr     

 

Time    0.024t   Time    0.084t   

x  Forward Backwrd Central Analyticl Forward Backwrd Central Analyticl 

 0 0 0 0 0 0 0 0 0 

0.1 0.000011 0.000145 0.000067 0.000039 0.020905 0.021049 0.020973 0.020827 

0.2 0.000138 0.000626 0.000367 0.000261 0.047791 0.047822 0.047796 0.047547 

0.3 0.001045 0.002375 0.001711 0.001398 0.086702 0.086198 0.086434 0.086153 

0.4 0.005558 0.008184 0.006878 0.006170 0.143576 0.142119 0.142829 0.142599 

0.5 0.022189 0.025369 0.023662 0.022479 0.223698 0.221082 0.222376 0.222260 

0.6 0.069453 0.069901 0.069237 0.067889 0.330799 0.327205 0.328999 0.329019 

0.7 0.175812 0.169052 0.171736 0.170904 0.466028 0.462065 0.464056 0.464181 

0.8 0.368691 0.354831 0.361241 0.361310 0.627116 0.623686 0.625417 0.625574 

0.9 0.653851 0.641661 0.647619 0.648077 0.808127 0.806131 0.807141 0.807247 

1 1 1 1 1 1 1 1 1 

 

Table 1.2 Numerical solution by FDMs and Analytical solution for Heat equation        

            For 0.52r     at  Time  0.065t   For 0.56r     at Time 0.112t   

x  Forward Backwrd Central Analytic Forward Backwrd Central Analytc 

0 0 0 0 0 0 0 0 0 

0.1 0.023773 0.010814 0.010484 0.010273 0.776866 0.046284 0.046578 0.046572 

0.2 0.055725 0.026504 0.026008 0.025626 1.510239 0.097461 0.098063 0.098062 

0.3 0.10337 0.052709 0.052363 0.051892 2.152292 0.158082 0.159003 0.159023 

0.4 0.172582 0.096225 0.096436 0.095989 2.650154 0.232002 0.23322 0.233277 

0.5 0.266426 0.164681 0.165793 0.165486 2.950927 0.321996 0.323438 0.323537 

0.6 0.384364 0.265256 0.267345 0.267248 3.012078 0.429412 0.430938 0.431068 

0.7 0.522485 0.402565 0.405279 0.405378 2.814291 0.553892 0.555309 0.555449 

0.8 0.674903 0.576318 0.578907 0.579099 2.372237 0.69327 0.694369 0.694487 

0.9 0.835657 0.779777 0.781365 0.781511 1.73879 0.843694 0.844295 0.844363 

1 1 1 1 1 1 1 1 1 

 Figure 1.8 Graph of Forward difference   

                   equation 

 Figure 1.9 Graph of Backward difference eqn 

 

http://www.jetir.org/


© 2020 JETIR June 2020, Volume 7, Issue 6                                                       www.jetir.org (ISSN-2349-5162) 

JETIR2006352 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 93 
 

 

 Figure 1.10 Graph of Central difference   

                     equation 

 
Figure 1.11 Graph of Forward, Backward,      

       Central equation and Analytic solution 

 

 

 Figure 1.12  Graph: Forward, Backward, 

Central difference schemes and Analytical 

Solution for 0.52r   

Figure 1.13 Graph: Forward, Backward, Central 

difference schemes and Analytical Solution for 

0.56r   

     

Results, discussion and conclusion: In the present paper, first and second order derivatives have 

been approximated from the Taylor’s series expansions. Second order correct ratio for the derivative gives 

better approximation than that of the first order correct. Parabolic partial differential equation describes 

unsteady-state problem in which transport by conduction or diffusion is important. A general equation of 
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this type represents the unsteady-state heating of the tapered rod. The simplest parabolic PDE, which 

describes conduction in a uniform, insulated rod, has been considered with the realistic initial and boundary 

conditions. The  analytical solution and numerical solutions for the PDE, equation (1.8) subject to the 

initial and boundary conditions given in the equations (1.9) and (1.10) respectively have been obtained by 

applying Forward difference equation, Backward difference equation and Crank-Nicolson (Central) 

difference equation, for the different values of the ratio r ,   
2 1

0.48
2

r t x     , 0.52 0.5r    and for 

0.56 0.5r   .  The graphical and numerical solutions given by the figures, Figure 1.8 to Figure 1.13, 

Table 1.1 and Table 1.2, clearly show that the forward difference equation of FDMs gives very closed 

numerical solution for the governing equation (1.8) subject to the given initial and boundary conditions as 

long as the value of the ratio  
2

0.5t xr    . It is also observed that the backward difference equation 

and Crank-Nicolson (central) difference equation give a numerical solution for the PDE (1.8) that matches 

well with the analytical solution without having any restriction on the ratio r .  
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